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Abstract This paper presents a hand gesture based in-
terface to facilitate interaction with individuals with upper-
level spinal cord injuries, and offers an alternative way
to perform “hands-on” laboratory tasks. The presented
system consists of four modules: hand detection, track-
ing, trajectory recognition, and actuated device control.
A 3D particle filter framework based on color and depth
information is proposed to provide a more efficient solu-
tion to the independent face and hands tracking problem.
More specifically, an interaction model utilizing spatial
and motion information was integrated into the particle
filter framework to tackle the “false merge” and “false la-
beling” problem through hand interaction and occlusion.
To obtain an optimal parameter set for the interaction
model, a neighborhood search algorithm was employed.
An accuracy of 98.81% was achieved by applying the
optimal parameter set to the tracking module of the sys-
tem. Once the hands were tracked successfully, the ac-
quired gesture trajectories were compared with motion
models. The dynamic time warping (DTW) method was
used for signals’ time alignment, and they were classified
by a CONDENSATION algorithm with a recognition ac-
curacy of 97.5%. In a validation experiment, the decoded
gestures were passed as commands to a mobile service
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robot and a robotic arm to perform simulated laboratory
tasks. Control policies using the gestural control were
studied and optimal policies were selected to achieve op-
timal performance. The computational cost of each sys-
tem module demonstrated a real-time performance.
Keywords: Gesture recognition; 3D particle filter; Neigh-
borhood search; dynamic time warping (DTW); CON-
DENSATION.

1 Introduction

Voice, facial expressions, gaze and hand gestures have
been widely employed as communication channels for
human computer interaction (HCI) and human robot in-
teraction (HRI) [1]. These modalities of interaction have
gradually made their way into assistive technologies (AT)
domain, such as home medical alert systems (use ab-
normal behavior recognition) and intelligent wheelchairs
(use gesture control). Such applications are designed to
help people with disabilities in performing daily living
activities [2, 3]. Among the usable communication chan-
nels, hand gesture is very effective because its intuitive-
ness, and expressiveness to deliver information, even in
noisy environments. As opposed to other cumbersome
means of interaction, such as joysticks and sip-and-puff
systems [4] which require users to physically manipu-
late controls or sensors, gesture based interfaces allow
users to perform free hand and arm movements to con-
trol actuated devices using customized gestures. This fea-
ture is especially meaningful for individuals with high
level spinal cord injuries who cannot perform hand and
arm gestures dexterously. Gesture-based interaction is a
promising alternative or complement to the existing con-
trol modalities.

In this paper, the problem of hands tracking and ges-
ture recognition was addressed. Face and hand tracking
was treated as an instance of the multi-object tracking
(MOT) problem. The main focus in this paper is one
hand tracking through interaction and occlusion. This



2

problem is challenging because hand gestures show vari-
ations among different users, while sharing a similar set
of motion trajectories. Further, since each hand (left and
right) have a similar appearance within the same indi-
vidual, trackers can drift from one hand to the other
when the hands are close together. In this paper, a com-
bined approach is described which effectively addresses
the challenging problem of tracking under self-occlusion.

The contribution of this paper is two-fold. First, it
proposes an interaction model based on 3D particle fil-
ter tracking. Robust face and hand tracking performance
was achieved by using 3D particle filters. The interac-
tion model tackled the “false merge” and “false label-
ing” problems through hand interaction and occlusion.
This model was divided into two parts, employing differ-
ent features to solve these problems. Spatial and depth
features were used to solve the “false merge” problem,
while the motion feature was used to solve the “false la-
beling” problem. Second, the paper proposes a procedure
to construct motion models and classify hand trajecto-
ries by utilizing the CONDENSATION algorithm. The
combination of hand detection, tracking, and trajectory
classification resulted in a real-time robust system for
HRI in assistive technology.

The rest of the paper is organized as follows. Section
2 introduces the related work for the research in this pa-
per. Section 3 provides the architecture of the proposed
system with a brief introduction of each module. Sec-
tion 4 discusses and describes in detail the proposed ap-
proaches for hand detection, tracking and gesture recog-
nition. The comparative tests and results are presented
in section 5. Section 6 gives the conclusions and discusses
future work.

2 Related Work

Hand gesture recognition based interfaces typically en-
compass three modules: hands’ segmentation, tracking,
classification of the trajectories and hand configuration
(the poses). A simple, yet common method for hand
segmentation is to build color distribution models and
back-project these models into unseen images. However,
these methods may fail under non-fixed illumination and
a cluttered background. Adding more modalities such as
spatial and depth information may increase the reliabil-
ity for hand segmentation under these constraints. This
can be obtained by utilizing Time of Flight (TOF) cam-
eras [5], stereo vision [6] or depth sensors, such as the
Kinect R© [7].

If the face and hands do not interact with each other,
the tracking problem is a special case of the indepen-
dent object tracking (IOT) problem which deals with
non-rigid object tracking. If interaction or occlusion oc-
curs, it becomes a special case of the MOT problem.
Classical tracking approaches can be adopted to solve
this problem if determining the shape of the hand is not

required. For instance, particle filter [8] is a commonly
used probabilistic based technique for object tracking.
Perez et al. [9] enhanced object tracking under complex
background by integrating an appearance model into the
standard particle filter framework. Perez et al. also ex-
tended the particle filter framework to track multiple
objects. Okuma et al. [10] incorporated a boost detector
to extend the particle filter framework to deal with the
MOT problem more effectively and enabled automatic
initialization for potential multiple targets. One prob-
lem with these techniques is that they did not consider
interaction among tracked objects as part of the particle
filter framework. Tracking under interaction and occlu-
sion conditions were studied in Kristan et al. [11] who in-
tegrated local motion information (calculated by optical
flow) into a color-based particle filter framework. Kang
et al. [12] tackled the ambiguity in the objects’ location
by registering video frames from multiple cameras. Khan
et al. [13] tracked multiple interacting targets by analyz-
ing their motion and adding a penalty function to the
particle filter framework. Qu et al. [14] integrated a joint
state space representation into a color-based particle fil-
ter and performed joint data association for multi-object
tracking. A magnetic-inertia potential model was pro-
posed to handle occluded tracking problems in a particle
filtering framework [14]. Other tracking approaches that
have been shown to be relatively successful for gesture
tracking are CAMSHIFT [15] and CONDENSATION
[16]. These techniques work for MOT problems under
certain constraints, but may not always result in robust
tracking for non-rigid objects in cluttered and unfixed
environments with frequent occlusion.

Hidden Markov Models (HMM) are one of the most
common approaches for gesture classification [17]. Com-
mon problems with HMM involve spotting the trajecto-
ries (gesture temporal segmentation) and selecting the
right set of parameters for initialization of the filters.
The CONDENSATION-based gesture trajectory recog-
nition algorithm proposed by Black and Jepson [18] can
be used to obtain more robust tracking and is less sensi-
tive to parameter selection.

3 System Architecture

The architecture of the proposed system is illustrated in
Fig. 1. The proposed hand gesture based recognition sys-
tem consists of five modules: foreground segmentation,
hand detection, tracking, gesture recognition, and an ex-
ecution module. Each frame captured by the Kinect cam-
era was passed as input to the system and then processed
by each of the modules. Eight dynamic gestures were se-
lected to constitute the gesture lexicon and then decoded
as commands to control the robots. In addition, an exe-

cution module was set to control a TurtleBot
TM

mobile
robot and a FANUC R© robotic arm through the wire-
less network using TCP and Telnet Protocol respectively.
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Fig. 1 System Overview

The modules mentioned above are briefly explained in
the following subsections.

A. Foreground Segmentation Module

The goal of the foreground segmentation module is to
reduce the search space of the hand detection algorithm.
In this module, the background pixels were ruled out
from the captured frames by using depth information
and the whole human body was kept as the foreground.

B. Hand Detection Module

This module was used to provide an initialization region
for the tracking algorithm. A skin and a non-skin color
model were first created and then back-projected to the
image in combination with morphological operations to
obtain the face and hands blobs. The blobs of the hands

were then extracted by excluding the face region with a
face detector.

C. Hand Tracking Module

A 3D particle filter framework based on a color appear-
ance model and depth information was used to track the
face and hands through video sequences if no interaction
or occlusion occurs. An interaction model based on spa-
tial and motion information was incorporated into this
particle filter framework to deal with occlusion. In addi-
tion, a neighborhood search algorithm was conducted to
optimize the parameters of the interaction model.

D. Gesture Recognition Module

Hand tracking trajectories were segmented, compared
with motion models and recognized by the CONDEN-
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SATION method. These gestures were then mapped to
a set of commands to control the robots.

E. Execution Module

The TurtleBot mobile robot was programmed using the
Robotic Operation System (ROS), which contains a set
of libraries developed by Willow Garage R© for robotic
control. The program is executed on the TurtleBot’s work-
station and waits for commands from the host computer
sent through TCP Protocol. The FANUC robotic arm
was programmed using KAREL, a scripted language used
to control FANUC robots. The program is executed on
the controller of the robotic arm through the Telnet Pro-
tocol.

4 Face and Hands Tracking

4.1 Foreground Segmentation

The goal of foreground segmentation in the proposed sys-
tem was to reduce the complexity incurred in the hand
detection phase. Initially, the connected components of
the hands (the whole human body) were treated as the
foreground. Two steps were employed to segment the
human body from the cluttered and uncontrolled back-
ground (refer to Algorithm 4.1). The first step was to
threshold the captured frame using depth information
acquired from the Kinect camera. This involved keep-
ing the pixels that were located within a certain range
with respect to the camera, while discarding the rest. Af-
ter applying connected components operations to those
pixels, ‘blobs’ were obtained. The second step was to ob-
tain a clean foreground by getting rid of small areas and
keeping the largest blob as the foreground.

In the first step, the depth information was acquired
by a Kinect sensor. For each pixel, the depth value was
defined as D(i, j), where i and j denote the horizontal
and vertical coordinates of the pixel. The distance of
each pixel within an object from the depth sensor was
mapped to intensity levels. Thus, the closer the object
is to the sensor, the higher the intensity is (Fig. 2(a)).
The image was thresholded by the depth value of each
pixel. One adaptive threshold (TDH) and an absolute
threshold (TDL) were set to rule out the pixels outside
of this range. TDL is set according to the technical specs
provided for the Kinect sensor by Microsoft (usually it
is set to 0.4 meter). TDH is automatically set according
to the depth value of the center region of the face (using
face detector as in section 4.2). Only those pixels with a
depth value between the two thresholds were kept in a
binary mask image (Fig. 2(b)).

In the second step, the mask image was used to com-
pute the area of the biggest region (blob), denoted as
(ASH). SH indicates the segmentation threshold for blob
extraction. All the remaining blobs with a smaller area
than ASH were discarded (Fig. 2(c)). If the largest blob

included an object that did not belong to the user’s body,
it would be discarded in a later stage because tracking
is performed based on color, depth, spatial and motion
information.

Algorithm 4.1 Foreground Segmentation Algorithm

INPUT: Low depth threshold TDL; High depth threshold
TDH ; Depth Image D(i, j).

OUTPUT:

Pixel values of depth thresholding image D1(i, j);

Pixel value of hand mask image D2(i, j).

Begin

D1(i, j) =

{
1 TDL ≤ D(i, j) ≤ TDH
0 otherwise

//Bi is the ith blob in the mask image D1

ASH = max(Area(Bi))

D2(i, j) =

{
1 D(i, j) ∈ Bi & Area(Bi) == ASH
0 otherwise

End

(a) (b) (c)

Fig. 2 Foreground Segmentation. (a) Depth image; (b)
Depth threshold mask; (c) Foreground segmentation mask.

4.2 Automatic Face and Hand Detection

The goal of this section was to detect the initial posi-
tion of the face and hands. Skin and non-skin color his-
tograms were constructed by using the Compaq database
[19], which included more than 3000 images with skin
color masks and more than 4000 non-skin color images.
All the images were converted from RGB to the HSV
color space. To obtain higher robustness for skin color
detection, two 3D histograms were created−a skin and
non-skin color histogram. The probability of a pixel be-
ing part of the hand was calculated as the ratio between
the two histograms, the one belonging to the skin over
the one belonging to the non-skin model (which was a
proxy of the distinctiveness- the higher the ratio, the
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more likely the two pixels belong to different color dis-
tributions). The mask image was obtained by applying
the histogram ratio and back-projecting the probabilities
of each pixel back into the image (Fig. 3(b)). To obtain
the hand regions without the face, the region detected by
a face detector [20] was removed from the target image.
The remaining two largest blobs were considered as hand
regions (Fig. 3(c), (d)). A geometrical moment was then
used to obtain the centroids of the hands. Although the
face and hand detection method mentioned above was
effective, it was too slow for real-time processing. There-
fore, this face and hands detection method was only used
to provide automatic initialization for 3D particle filter
tracking.

(a) (b)

(c) (d)

Fig. 3 Face and hand detection. (a) Face Detection; (b) Skin
color detection; (c) Hand extraction; (d) Face and hand lo-
calization.

4.3 3D Particle Filter Tracking

A Sequential Importance Resampling (SIR) particle filter
framework was used to track the face and hands through
video sequences. See [9, 13, 21] for a detailed description
of the SIR algorithm. Temporal filtering is given by equa-
tion (1):

p(Xt|Z1:t) = k · p(Zt|Xt)
∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dxt−1

(1)

where Xt is the state at time t, Z1:t = {Z1, . . . , Zt} is
all the observations from time 1 to t, p(Xt|Z1:t) is the
posterior distribution at time t, p(Zt|Xt) expresses the
prior distribution (observation probability), p(Xt|Xt−1)
is the transition probability that the system is at stateXt

at time t given that the previous state is Xt−1, and k is
a normalization factor. The posterior at time t−1 can be

approximated by N weighted particles as p(Xt−1|Z1:t−1) ≈
{Xr

t−1, ω
r
t−1}Nr=1, where ωr

t−1 is the weight of the parti-
cle r at time t − 1. Then for a given time t, N parti-
cles were propagated from the distribution with a tran-

sition model p(Xr
t |Xr

t−1) as Xt ∼
N∑
r=1

ωr
t−1p(X

r
t |Xr

t−1).

Each sample was obtained by computing the product
of its weight and its likelihood given that the obser-
vation ωr

t ∝ p(Zt|Xr
t ). This results in a weighted par-

ticle approximation as p(Xt|Z1:t) ≈ {Xr
t , ω

r
t }Nr=1. The

tracker output can be approximated by the expectation

X̂t ≈ E[Xt|Z1:t] =
N∑
r=1

ωr
tX

r
t . Thus, equation (1) can be

written as equation (2):

p(Xt|Z1:t) ≈ k · p(Zt|Xt)

N∑
r=1

ωr
t p(X

r
t |Xr

t−1) (2)

The initial locations of the particles were selected in the
face and hands centroids, each, which were calculated by
using the method described in section 3.2.

The particle filtering process consists of three main
stages: predicting, measuring and resampling. In the pro-
posed system, for the prediction stage, a second order
auto-regressive (AR) model [10, 21] was selected as the
dynamic motion model as in equation (3):

Xr
t = A ·Xr

t−1 +B · (Xr
t−1 −Xr

t−2) + νt (3)

Where A and B are set to 1 in this paper, νt is a Gaus-
sian distribution with zero mean and variance matrix
Σ, Xr

t is the state of the particle r at time t. Com-
monly, particle filters are applied to 2D tracking and only
2D locations and the scale are considered as the com-
ponents for each state. The 2D particle filters demon-
strate better performance in non-static and cluttered
backgrounds than other tracking algorithms. However,
2D particle filters often fail, because the particles tend
to reach a local minimum based on the information from
the 2D images but not from the 3D real world coor-
dinates. To tackle this problem, a 3D particle filter al-
gorithm was employed. By integrating depth informa-
tion into particle filters, it became much easier to dis-
tinguish two objects with similar color distribution. As
a result, the state Xr

t in equation (3) can be written as
Xr

t = [xrt , y
r
t , z

r
t , s

r
t , x

r
t−1, y

r
t−1, z

r
t−1], where xrt , y

r
t , z

r
t are

the 3D locations of particle r at time t and st is the scale
of object at time t.

In the measuring stage of the particle filtering algo-
rithm, the choice of the observation model plays a very
important role in determining the weight of the particles.
Color pre-processing can facilitate the extraction of the
aforementioned features. Projection of a HSV skin color
histogram is deemed as an efficient model for face and
hands tracking. As explained earlier, in the initial phase,
the face and hands were detected by the combination of
depth-based threshold and image processing techniques.
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The results were used to provide the initialization for the
particle filters. Three reference HSV histogram models
H∗

f , H
∗
h1 and H∗

h2 were calculated for the face and hand
regions, respectively, for tracking initialization. During
the measuring phase, each particle, assigned in the pre-
dicting phase, was reweighted by the likelihood function
based on the observations. For every hypothesized face or
hand location (the region of a certain particle), the can-
didate histograms for face and hands of particle r were
computed as Hr

f , H
r
h1 and Hr

h2. A distance D is calcu-

lated from the Bhattacharyya similarity coefficient [9] as
shown by equation (4).

Dr
i (H∗, Hr) = [1−Σ

√
H∗

i ·Hr
i ]1/2 (4)

where H∗
i = H∗

f , H
∗
h1 or H∗

h2. Hr
i = Hr

f , H
r
h1 or Hr

h2.
The color-based observation likelihood function can be
written as in equation (5):

p(Zt|Xt) = k · exp(−λ1(Dr
i )2) (5)

where λ1 is a measure of variance for the HSV histogram
and k is the normalization factor to normalize the sum
of all particles’ weight to 1.

4.4 Hand Interaction and Occlusion

As mentioned in section 4.3, the color histogram based
3D particle filter framework was used for face and hands
tracking. Three trackers were used to track the face and
two hands separately. This approach was very effective
for multiple independent objects tracking when the face
and both hands did not interact or occlude each other.
However, when the face and hand were in close proximity
or the two hands interacted and occluded each other, the
trackers may suffer from the “false merge” and “false la-
beling” problems [14]. The “false merge” problem means
that the tracker loses track of the object being tracked
and mistakenly focuses on a different object that has
higher observation likelihood. Since the two hands are
very similar in color and their shapes are changing while
following certain trajectories, the ”false merge” problem
is very likely to happen during face and hands inter-
action. Conversely, the “false labeling” problem means
the exchange of labels assigned to objects after inter-
action or occlusion occurs. This could happen for face
and hands tracking when ”false merge” does not occur
and the tracker can be separated from each other after
interaction.

When multiple objects interact with each other or oc-
clusion occurred, the observations were not independent
anymore. As a result, the posteriors of different objects
were conditionally dependent. The “false merge” prob-
lem happens when the objects are conditionally depen-
dent on each other. A first order Markov chain was used
to analyze the dynamic interaction model between the
face and both hands tracking. The correlation between

the face and both hands when they interact with each
other was represented as a Markov network (Fig. 4). If
there was interaction between the face and both hands,
the observation depended not only on its own state, but
also on the observation of the interacting object (face or
the other hand). For example, if the right hand is inter-
acting with the left hand, the observation of the right
hand would depend not only on its own state, but also
on the left hand’s observation. In this paper, an inter-
action model (CPMC) consisting of two sets of features
were employed to solve “false merge” and “false labeling”
problem. The first set of features including 3D spatial
information was named “Competition Potential” (CP)
and was used to keep the interacting occluded objects
separated and to solve the “false merge” problem. The
likelihood function for CP is defined as ψ1(Xi,t, Xj,t).

Fig. 4 Dynamic Markov network for face and both hand
tracking. xf,t, xhr,t, xhl,t, are the current hidden state for
face, right and left hand. xf,t+1, xhr,t+1, xhl,t+1, are the next
hidden state for face, right and left hand. zf,t, zhr,t, zhl,t,
are the current observation of face, right and left hand.
zf,t+1, zhr,t+1, zhl,t+1 are the next frame’s observation of face,
right and left hand.

ψ1(Xi,t, Xj,t)
r = β1 · exp(− λ2

d(Xr
i,t,Xj,t)2

)

· exp(−λ3d(Xr
i,t, Xi,t−1)2) · exp(− λ4

dz(X
r
i,t,Xj,t)2

)
(6)

where i, j represents the interacted objects, d(Xr
i,t, Xj,t)

is a 2D distance metric between two objects (e.g. Eu-
clidian), d(Xr

i,t, Xi,t−1) is a distance metric between the
current and previous position of object i, dz(Xr

i,t, Xj,t)
is the difference of depth value between two objects, β1
is a normalization factor. These features were selected
to solve the “false merge” problem for the following two
reasons. Firstly, we want to incorporate the spatial and
depth information into the likelihood function to weight
each particle according to the competition potential be-
tween two objects. Here, the distance between the two
objects in image plane and depth direction is a simple
yet effective choice according to [13, 22]. Secondly, the
object has potential to keep its inertial, so the distance
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metric between the current and previous position was
also concerned. In addition, since it is easier to specify
the competition potential in the log domain, the expo-
nential function was adopted.

The second set of features including 3D motion in-
formation was called “Motion Consistency” (MC). The
likelihood function for this set of features is defined as
ψ2(Xi,t, Xj,t), which is based on the assumption that a
particle region that has similar motion information to
the previous state of that particle will have higher prob-
ability than a particle region that has distinct motion
information. MC feature set was used to solve the “false
labeling” problem. The equation similar as in [14] was
employed to compute the likelihood function for the 3D
motion features instead of using motion information from
2D image plane.

(ψ2)ri,t = β2 · exp(−λ5(θrt )2) · exp(−λ6(Ar
t −Aref,t)

2) (7)

Where Ar
t is the norm of 3D motion vector of particle r

at state t and Aref,t is the reference motion vector, θrt
is the angle between the 3D motion vector of particle r
and the reference vector. The 3D motion vector can be
calculated by the difference of the current and previous
3D position vector. The reference motion vector can be
calculated as the previous motion vector, β2 is a normal-
ization factor. These two features were selected because
both angle and magnitude were required for motion to
weight each particle and the 3D motion vector were used
because they represented the 3D real movement of the
face and hands. The exponential function was adopted
to specify the likelihood function in the log domain.

If interaction happens, the observation likelihood func-
tion for particle r can be calculated as equation (8),
which is a combination of equation (5), (6) and (7):

p(Zt|Xt) = β ·exp(−λ1(Dr
i )2)·ψ1(Xi,t, Xj,t)

r ·(ψ2)ri,t (8)

where β is a normalization factor. By using the charac-
teristic of the exponential function, equation (9) is ob-
tained:

p(Zt|Xt) = β · exp{−[λ1(Dr
i )

2 + λ2
d(Xr

i,t,Xj,t)2

+λ3d(Xr
i,t, Xi,t−1)2 + λ4

dz(X
r
i,t,Xj,t)2

+λ5(θrt )
2 + λ6(Art −Aref,t)

2]}
(9)

When the objects did not interact with each other, the
approach performed as multiple independent trackers by
using a color based 3D particle filter framework. Equa-
tion (5) was used to compute the observation probability
of particle r. However, when the objects interacted (e.g.
partial or complete occlusion occurred), spatial, depth
and motion information were taken into account together
to solve the “false merge” and “false labeling” problems.
Equation (9) was used to compute the observation prob-
ability of particle r at this condition. Face and hand
tracking results with interaction were shown in Fig. 5.
The algorithm for hand tracking during interaction and
occlusion was shown in Algorithm 4.2.

Fig. 5 Hand tracking through interaction and occlusion.

Algorithm 4.2 3D particle filter tracking with interac-
tion model
INPUT: Reference HSV histogram models H∗

f , H
∗
h1 and

H∗
h2;

OUTPUT: Centroids of the face and both hands and the
associated bounding box.
Begin

1: Initialize:
//Initialize particle states and weight for face and both
hands as:

xi0 = x∗0,

ωi0 =
1

n
for i = 1, . . . , n;

2: Predict, Measure and Resample:
for i = 1, 2, 3 //(1-face, 2-right hand, 3-left hand)

for r = 1 to N
//N is the number of particles
//compute transition model for 3D particle filters
Xr
t = Xr

t−1 + (Xr
t−1 −Xr

t−2) + νt

//Compute candidate histograms Hr

Di(H
∗, Hr) = [1−Σ

√
H∗ ·Hr]

1
2

//Calculate the weight:
ωri,t = k · exp(−λD2

i,t)

//Check interaction
if interaction happens for object i and j

for q = 1 to N
//computer interaction likelihood ψ1 and ψ2:
use equation (6) to compute (ψ1)qi,t(Xi,t, Xj,t)

use equation (7) to compute (ψ2)qi,t
//Calculate the weight:
ωqi,t = ωqi,t · (ψ1)qi,t · (ψ2)qi,t
end for

end if
end for
Normalize the weights of particles for each object.

Reset distribution of particles according to their weight.

Estimate X̂i,t =
∑N
r=1 ω

r
i,tX

r
i,t

end for
End
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4.5 Parameters Search for Interaction Model

As mentioned in section 4.4, if interaction occurs between
two objects, a interaction model was applied to the color
based 3D particle filter framework to solve ”false merge”
and ”false labeling” problem for face and hands. How-
ever, from equation (9), we can see a set of parameters
need to be established to calculate the weight for each
particle. Manually setting is a tedious ad-hoc method
which does not guarantee optimality. To achieve bet-
ter tracking performance, a neighborhood search method
was employed to find the optimal parameters. Let p be
the parameter vector: p = [λ1, λ2, λ3, λ4, λ5, λ6]. During
the parameter search process, each parameter was incre-
mented by a positive and negative margin. This method
was initialized with a random solution. The parameters
search process is described as in Fig. 6. An iteration in
the neighborhood search algorithm is defined as a full
round of increment and decrement of the parameter vec-
tor, which each is applied to tracking the hands in all
the frames in the training video sequences and obtaining
for each a corresponding accuracy. Then, the parameter
vector which had assigned the highest accuracy value
is selected as the optimal parameter for that round (it-
eration). The parameter search process ends when the
maximum iteration number was reached or the param-
eters stoped to change after two continuous iterations.
An example of the parameter search processes is shown
in Fig. 7. Five seeds were randomly selected to initialize
each searching process. An optimal set of parameter was
then obtained for each initial seed by the neighborhood
search algorithm.

Fig. 6 Optimal parameter search for interaction model

Fig. 7 Accuracy vs. Iteration

5 Gesture Recognition

The positions of the hands in each frame of the video
sequences were acquired in the tracking stage. The tra-
jectories constituted by these acquired discrete locations
were then compared with the motion model of each ges-
ture in the lexicon. These motion models were constructed
by using the training data collected from eight able-
bodied subjects. Although in different instances, the tra-
jectories for each gesture collected from different sub-
jects or even different instances of the same subject may
look similar, the precise duration of each sub-trajectory
within the trajectory were different. Dynamic time warp-
ing (DTW) algorithm [23] was employed to align all the
trajectories for each motion model of the gesture in the
lexicon. The velocity components in the horizontal and
vertical directions for both hands were adopted to com-
pose the feature elements for each motion model [21].
The following procedure was adopted to obtain the mo-
tion models (Algorithm 5.1).

The CONDENSATION algorithm [18] was used to
recognize hand gestures in the lexicon. The CONDEN-
SATION algorithm applies the random sampling to model
probability density functions. Instead of fitting the ob-
served data to a specific equation, the CONDENSA-
TION algorithm uses a set of weighted samples to ap-
proximate the observed data. There are four modules in
the CONDENSATION algorithm to recognize dynamic
hand gestures: initialization, prediction, updating and
classification. The original algorithm was extended to
work for two hands. For the original equation in [18],
the state at time t can be described as St = (µ, φ, α, ρ).
For this paper, this expression was extended to:

St = (µ, φi, αi, ρi)

= (µ, φright, φleft, αright, αleft, ρright, ρleft)
(10)

where, µ is the index of the motion models, φ is the
current phase in the model, α is an amplitude scaling
factor, i ∈ {right hand, left hand}, ρ is a time dimension
scaling factor.
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Algorithm 5.1 Procedures to Construct Motion Models

INPUT: Number of gestures G; number of subjects S;
number of sampling trajectories from each subject T ;
horizontal and vertical velocity for left and right hand
V mp ,m = 1, . . . , S × T .

OUTPUT: Motion models for each gesture.
Begin
for k = 1 : G

for j = 1 : S
for i = 1 : T − 1

Align V ip with V i+1
p to obtain V iap

end for
Align V Tp with V 1

p to obtain V Tap
V jp =

∑T
i=1 V

i
ap/T

end for
for j = 1 : S − 1

Align V jp with V j+1
p to obtain V jap

end for
Align V Sp with V 1

p to obtain V Sap
V kp =

∑S
i=1 V

i
ap/S

end for
End

6 Experiments and Results

6.1 Hand Tracking Performance Evaluation

A dataset consisting of 16 videos (4 subject x 4 activi-
ties) was used to test the new tracking algorithm. The
total number of frames for these videos was 6160, along
with hand labeled ground truth data for both the right
and left hand. The activities performed by the subjects
were: (a) holding a cup with two hands (1010 frames),
(b) clapping hands (2230 frames), (c) moving hands up
and down (one hand occludes the other) (1320 frames),
(d) rotating hands forward and backward (two hands
occlude each other) (1600 frames). The videos were cap-
tured using a Kinect camera at 30Hz with an image size
of 640 x 480. The tracking performance for the proposed
method (3DCPMC) was compared to Kinect R© OpenNI
SDK Skeleton tracking algorithm and three other exist-
ing state of the art tracking algorithms: (i) mean shift
(MS), (ii) standard particle filter (SPF) tracking, and
(iii) Markov Chain Monte Carlo (MCMC) based particle
filter tracking. All the algorithms used to compare our
approach were not optimized to deal with interaction and
occlusion.

Although both face and two hands were tracked in
the proposed system, the focus was on hands tracking
through interaction and occlusion. Thus, only the per-
formance of both hands tracking was evaluated for all
the algorithms. This evaluation was performed between
the ground truth (GT) and system tracker (ST). To ob-
tain better evaluation, a set of metrics presented in [25,
26, 27] was employed.

A. Object Tracking Error (OTE)

The object tracking error is defined as the average dis-
crepancy between the GT bounding box centroid and the

centroid of ST :

OTE =
1

M

M∑
i=1

√
(xgi − xri )2 + (ygi − yri )2 (11)

where M represents the total number of tracked frames,
(xgi , y

g
i ) represents the ground truth coordinate of the

object’s centroid in ith frame, and (xri , y
r
i ) represents

the tracked centroid of the object in ith frame.

B. Mean spatial overlap ratio (MSOR):

MSOR(GTi, STi) =
1

M

M∑
i=1

Area(GTi ∩ STi)
Area(GTi ∪ STi)

(12)

where GTi is the Ground truth bounding box in ith
frame and STi.

C. Accuracy:

Accuracy =
total number of true positives and true negative

total number of ground truth points

(13)

where the true positive is defined as the number of
frames that the objects exists and the tracker can find the
object correctly. While the true negative means the num-
ber of frames that the object does not exist and tracker
also agrees that the object is absent [27].

D. False Merge Ratio (FMR):
The “false merge” was defined when the tracker of one
hand occupies 80% of the space corresponding to the
other hand. FMR is defined as the ratio between the
number of “false merge” frames and the total number of
frames.

E. False Labeling (FL):
The “false labeling” was defined when the trackers of
both hands were labeled incorrectly during/after inter-
action or occlusion.

The optimal parameter set resulting from neighbor-
hood search algorithm was applied to the interaction
model. The metrics mentioned above were computed by
using the tracking results (centroid and bounding box).
Table 1 shows the value of each metrics under differ-
ent algorithms. From the table, the proposed algorithm
(3DCPMC) exhibits the best performance for interac-
tion and occlusion conditions through all the frames in
the testing videos.

Our dataset included four activities where hands in-
teraction and occlusion happened quite frequently. The
tracking sequences of “clapping hands”, “holding a cup”
, and “rotating hands forward and backward” activities
are shown in Fig. 8, 9, and 10, respectively. An exam-
ple of “moving hands up and down” activity can be
seen in Fig. 5. These video sequences demonstrated how
the tracker worked under hand interaction and occlusion
conditions.
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Fig. 11 Gesture lexicon, left to right: upward, downward, rightward, leftward, clockwise circle, anti-clock circle, S, Z.

Fig. 12 Dynamic motion models constructed by using DTW.

Table 1 Tracking performance and computational cost

Metric Method KinectR© MS SPF MCMC
3DCPMC
(proposed)

Accuracy (%) 32.60 20.46 67.08 72.34 98.81

Mean Spatial Overlap Ratio 0.2406 0.0849 0.7087 0.5245 0.7670

Object Tracking Error (pixel) 24.3723 19.9022 7.8077 7.3930 5.7711

False Merge Ratio 0 0.1008 0.6714 0.3887 0

False Labeling
3 13 15 6 2

(110 interactions)

Particle Number – – 100 100 100

Computational Cost
0.033 0.036 0.039 0.039 0.041

(s/frame)

Frame 46 Frame 51

Frame 53 Frame 59

Fig. 8 “Clapping Hands” Activity

Frame 108 Frame 216 Frame 276

Fig. 9 “Holding a Cup” Activity

6.2 Recognition Accuracy

For this proposed system (as in Fig.11). an eight-gesture
lexicon was determined through interviews with individ-
uals with upper extremity mobility impairments and uti-
lizing prior data analysis results [24]. The size of the lex-

Frame 41 Frame 42 Frame 44

Frame 46 Frame 60 Frame 74

Fig. 10 “Rotating hands forward and backward” Activity

icon was determined by minimizing the memory load for
the user and at the same time satisfying the minimum
command requirements for robotic control. The spatio-
temporal trajectories of those gestures were recognized
by the proposed system and, in turn, sent as commands
to control the robots. The motion model for each gesture
trajectory was constructed by using the DTW algorithm.
The horizontal and vertical velocities of right and left
hands were used as the main feature components. The
motion models constructed for this eight-gesture lexicon
are shown in Fig. 12 (the red and cyan lines showed the
horizontal and vertical velocities of right hand, while the
blue and dark lines showed horizontal and vertical ve-
locity of the left hand). These plots were the templates
showed the movement of each hand for each gesture.

The recognition accuracy of the proposed system was
validated by eight able-bodied subjects. Ten sessions were
used for cross validation for each gesture (k-fold with
k=10). In each session 72 observations (8 gestures x 9
repetitions) were used for training and 8 observations
were used for testing. This cross validation resulted in
an average accuracy of 97.5%. A confusion matrix was
computed and is shown in Fig. 13 (with a temporal win-
dow size of w = 20). The receiver operating characteris-
tic (ROC) curve displayed the system performance when
changing the size of the window from 10 to 24 to different
values (as shown by Fig. 14). All the parameters for ges-
ture recognition were tuned under controlled laboratory
conditions. Readjusting parameters for non-laboratory
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environment is challenging and will be the focus of our
future work.

Fig. 13 Confusion matrix with window size w =20.

Fig. 14 ROC Curve showing recognition performance for
each gesture.

6.3 Laboratory Experiment

A simulated laboratory task was performed by five sub-
jects including three able-bodied individuals and two
individuals with quadriplegia due to a cervical spinal
cord injury. Each of the subjects completed the task five
times by controlling two robots working cooperatively.
Both robots were controlled using hand gestures and the
recognition system issued the commands to control the
robots. While the mobile robot cannot present any harm
to the user, the robotic arm is of industrial type, and
therefore a minimum distance must be respected to as-
sure proper safety to the user. While the task completion
time may differ according to the skill level of the subjects
performing the experiment, we believe they reflect gen-
eral trends in completion times of a large pool of users
with spinal cord injuries. In this experiment, the subject
navigated a mobile robot to a position near a robotic
arm and activated the robotic arm to add a reagent
to a beaker. The gestures from the lexicon (as in Fig.

11) were employed to control the mobile robot and the
robotic arm and then mapped to the commands: ‘change
mode’, ‘robotic arm action’, ‘go forward’, ‘go back’, ‘turn
left’, ‘turn right’, ‘stop’ and ‘enable robotic arm’. Fig. 15
shows four examples of gestures mapping when the sys-
tem was used by an subject with upper-level spinal cord
injury to control the mobile robot and the robotic arm.
Three modes were used to control the mobile robot: dis-
crete, continuous and hybrid mode (discrete plus contin-
uous mode). In discrete mode, the robot moved a fixed
increment of distance, every time that a command was
issued. While in continuous mode, the robot responded
to a given command, until the ‘stop’ or another com-
mand was issued. One distinctive gesture command (‘up-
ward’) was utilized to switch between the discrete and
continuous modes. In the experiment, the three control
modes were used by each subject to control the mobile
robot and to performed the task five times. The result-
ing average task completion time including performance
of able-bodied subjects and subjects with quadriplegia
were 241.8, 134.7, and 169.6 seconds, for the discrete,
continuous and hybrid, respectively.

(a) (b)

(c) (d)

Fig. 15 Gesture mapping for robotic control

6.4 Real-Time Performance

The proposed system demostrated real-time performance
during hand detection, tracking, recognition and robotic
control. This system was implemented by using Microsoft
Visual Studio C++ 2010 and OpenCV Library 2.1. The
whole program was run on a 3rd Gen Intel CoreTM i3-
3220 PC (Dual Core, 3.30GHz 3MB, w/HD2500 Graph-
ics). The computational cost for detection, tracking, recog-
nition, and robotic control were: 0.052s, 0.041s, 0.001s,
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and 0.003s respectively. Among all the modules, the hand
detection module was only performed when a user started
to use the system. Thus, the total processing time for a
frame after initialization was 0.045s.

7 Conclusions and Future Work

A real time hand gesture recognition based interface was
developed for individuals with spinal cord injuries. A 3D
particle filter was used to track both hands through oc-
clusion. An accuracy of 98.81% was obtained by using
the optimal parameters for tracking. A comparison be-
tween our proposed approach (3DCPMC) and Kinect
skeleton tracking with the other three state of the art
algorithms demonstrated that our approach can achieve
robust performance for hand tracking through interac-
tion and occlusion conditions. Both “false merge” and
“false labeling” problems were tackled by the proposed
method. Computation cost table demonstrates the real
time performance of the proposed tracking algorithm. A
training procedure was proposed to obtain motion mod-
els for each gesture in the lexicon, and the CONDENSA-
TION algorithm was used to classify bimanual gesture
with a recognition accuracy of 97.5%.

A simulated laboratory task test was conducted using
a mobile robot in concert with a robotic arm through the
gesture recognition based interface proposed in this pa-
per. It was found that the gesture recognition algorithm
was robust enough to support the completion of this
task. Three control modes (discrete, continuous, and hy-
brid) were compared. Results showed that the continuous
mode required the least average task completion time,
while the discrete control mode required the longest. Be-
cause the discrete mode was more labor-intensive, fatigue
may have been a factor for the quadriplegic subjects.
Therefore, the authors recommend using continuous con-
trol mode in general, and using discrete mode only when
the robot is near the target for fine adjustment and ma-
nipulation. Real-time performance was required to en-
sure a responsive user system. Future work includes: (1)
develop more effective and robust algorithms to obtain
higher tracking accuracy; and (2) extend the system to
be used in more laboratory tasks.
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